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ABSTRACT

In this article, predator prey interactions whene predator is exposed to the risk of disease andekting is
proposed. Equilibrium points, boundedness, andpwiedic solutions of themodelare obtained. Lotabiity and global

stability were discussed. The equilibrium was stdbtally, but not globally.
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1. INTRODUCTION

Prey-predator models are of great interest toarebers in mathematics and ecology because thdywida
environmental problems such as community’s morpidihd how to control it, optimal harvest policy sostain a
community, and others. In the physical sciencesgede models can be constructed to explain a wadétphenomena.
However, in the life sciences a model only desarié@agarticular situation. Simple models such ad thitka-Volterra are
not able to tell us what is going on in the majodf cases. One of the reasons is due to the codhplaf the biological

ecosystem. Hence, we still seek for a variety oflef®to describe nature.

Theoretical and numerical studies of these modedsable to give us an understanding of the inters that is
taking place. A particular class of models congdae existence of a disease in the predator gt Beveral models were
constructed to study particular cases. To enswexistence of the species involved, one of thgsstaken is to harvest
the infected species. In this paper, we considec#se where the infected predator is harvestegr&8aelated theoretical

studies have been conducted.

Amongst them are studies on the disease spreadgathe prey and the epidemic among predators witiora
incidence [6], the role of transmissible diseasthnHolling Tanner predator prey model [4], thalgsis of prey predator
model with disease in the prey [7], another’s sttldy disease in Lotka Volterra, [3] study the dymaof a fisher
resource system in an aquatic environment in twwegdarvest in reserve area, [5] study the hangsti infected prey,
[1] show the stability analysis of harvesting, Rludy the stability of harvested when the disedfexta the predator by
using the reproduction number.

The model is introduced after this section, fokalby analysis on boundedness and properties sbibi&ons.
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2. THE MATHEMATICAL MODEL

Consider the following dynamical system:

%:a(l—x)x—b(y+z)x

ﬂ=cxy+ayz-h1y

dt

dz _ _h

E_CXZ ayz—hn,z 1)

wherex, y, z are the prey, infected predator and susceptiblégpoe respectivelyy is the growth rate of prel,
Cthe capture ratéb > C), is the contact rate between the susceptible fiedted predatorhl, and h2 are the harvest

rates of the infected and susceptible predatorestsly, and assume that the less effective poedstall be easier to
harvest, so; it is better also to assume infectedaior not become susceptible again and fina#lydibease does not affect
the ability of the infected predator attacking prey

2.1. Bounded of Solutions

Theorem 1

The solution of system (1) is bounded.

Proof

Let the functionw(X, Y, Z) = X(t) + y(t) + z(t) and let & be a positive number such tith& 77 < h, .

Then, W/ (t) +Uw = ax(L - X) +/7x ~ (b= C)(y + 2)x~ (N, ~77)y ~ (N, ~7)2

a+ a+n\'| 1(a+n)’
W (t) +uw < —a x° —[ ”jx+( ”j +_[_’7j
a 2a a\ 2
2
Leti(wj —v
a\ 2

W (t) +uw(t) < v

0<Ww(X,Y,2) < %(1— e'“t)+ e (X,Y,2)|, o
Theorem 2

LetF (X, y) = ax—ax® —bxy, G(x,y) =cxy —hy,

M(x2) =ax—ax* —bxz N(x,2) = cxz-h,z
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Define a functiorH (X, y) = i
Xz

ThenQ(X,y) =

o(HF) N o0(HG) _ _a
0X ay y

It's clear that is no change in change sign; ttoeeg this system cannot have any periodic solutiorihe
xy-plane.

d(HM) , 3(HN) _ _a

Again, Q(X,2) = ™ 5 »

There is no change in sign; therefore, there iperiodic solution in xz- plane.
Hence, the system has no periodic solution.

2.2. Equilibrium

The dynamical system (1) has the following fiveefi points: the origin (f, a predator fee fixed point {f a
disease free fixed point {£ a fixed point when all predator infected;\Eand a fixed for which both population survive
(Es):

E :(X,y,2) = (000)
E2 : (X! yl Z) = (:LO!O)

E;:(X,¥,2) =(X,,0,2,); whereX, =E ,Z, :@
Cc

all-
E4 (X7y1 Z) = (X31y3 ;0) X WhereX3 :% ,y3 :%

* * * b CX*_h hl_bX*
E;:(X,y.,z)=|1-—(h -h,), 2,
5. (X,y ) ( aa(h1 ,) p p J

3. STABILITY

The Jacobian matrix of system (1) is given by:

a—2ax-b(y+2) —bx —bx
J(X,Y,2) = cy cx+az—-h ay
cz -az cx—ay—h,

Case 1: The System without Disease

When infected predators eradicate, the systerhgddmes:
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LS =a(l—x)x—bxz

gt (1a)
z

— =cxz—h,z

dt

h
The equilibrium (nontrivial) arg, '(L0) E.'(X,,Zz,) where,X, =—=2,2, = % *-x,)
’ C

Proposition 1

E. '(L,0) is stable wherh, > ¢ and unstable otherwise.

Proof
The eigenvalues near the first equilibrium ar@and C — h2. This completes the proof.
Theorem 3
If the equilibrium E_'(X,, Z,) is locally stable, then the basin of attractioritn$
equilibrium is denoted bB(E_'(X,, Z,))
, 2 h, a . h, a
whereB(E,") ={(x,2) 00,  :x>—=,z>—(1-x)with—=z<—-(1-X x}
C b C b
Proof
LetV (X, Z) be a function where
X z
V(X,2) =| X=X, =X, l0g™ |+| 2=z, -2,log* |, the
dv
Pl G X;)* = (b= C)(X=%,)(2-2,) <0
Remark:

ax, \/azxz2 - 4ah, (1- x,)

The eigenvalues nebt,'(X,, z,) are - > and
aa(l-x

h, + az, —h,, and stable wheﬂl—M >
b(h, —h,)

Case 2: When all Predators Become Infected

When all predators become infected the subsysfeaypstem (1) becomes:
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LS =a(l— x)x—bxy

gt (1b)
T =oxy-hy

dt

_h

The equilibrium (nontrivial) ar&_ '(L0) E.'(X;,Y;) where,X; =— ,y, = % L-x;)
’ C

Proposition 2
E. '(L0) is stable wherh, > ¢ and unstable otherwise.
Proof
The eigenvalues nekt, '(L0) are—a and C — h,. This completes the proof.
Theorem 4
Assume the equilibriunE_'(X;, Y;) is locally stable, the basin of attraction of teiguilibrium is denoted by
B(E.'(X5,Ys)) whereB(E.") ={(x,2) 00 +2 IX> X3, Y > Y}
Proof

The proof is the same as in theorem (3).

Proposition 3

aa(l-x,)

b(hl - hz)

The equilibriunE_'(x;, y;,0) is stable with conditio) >1—

Proposition 4
The stability near the equilibriurEC* (X',y",Z) is given by equation
A* + AA® + BA + C = Owhere
A=ax >0, B=bxc(y +Z)+a°yz . C=ad*Xy z >0
AB-C-=ax (bx'c(y +z))>0
From Routh-Hurwitz stability criterion it is stal

4. CONCLUSIONS

In this paper, the discussion and analysis moadsl predator interaction with harvesting of predasgresented.
Boundedness of solution, and equilibriums pointthwieir conditions were discussed. The basin aita of some of
equilibrium points was also calculated. Finallye tlesult shows us the infected predator increasdle whe susceptible

predator decreasing.
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